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We have calculated inelastic mean free paths (IMFPs) for 45 compounds for electron energies over the 50 eV to 200 

keV range with the full Penn algorithm from the energy-loss functions of the compounds. Our calculated IMFPs could 
be fitted to a modified form of the relativistic Bethe equation for inelastic scattering in matter for energies from 50 eV 
to 200 keV. The average root-mean-square deviation in these fits was 0.60 %. The IMFPs were also compared with a 
relativistic version of our predictive Tanuma-Powell-Penn (TPP-2M) equation. 

 
 
1. Introduction 

Information on the inelastic scattering of electrons 
in solids is important for various applications ranging 
from radiation physics and radiation transport to thin-
film analysis in the transmission electron microscope 
(TEM) and surface analysis by Auger-electron 
spectroscopy and X-ray photoelectron spectroscopy. A 
key parameter in these applications is the electron 
inelastic mean free path (IMFP). 

Therefore, we previously calculated IMFPs for 
many solid materials over a wide energy range.[1-8] 
Initially, we reported IMFPs for 50 eV to 2,000 eV 
electrons for 27 elemental solids, 15 inorganic 
compounds, and 14 organic compounds. We analyzed 
these calculated IMFPs with the Bethe equation for 
inelastic scattering of electrons in matter to develop an 
IMFP predictive formula (designated TPP-2M).[4] The 
TPP-2M equation could be used to estimate IMFPs in 
other materials, again for energies between 50 eV and 
2,000 eV, the energy range of interest for many AES 
and XPS experiments.  

Since there is a need for IMFPs in transmission 
electron microscopy (TEM), we also calculated IMFPs 
in 41 elemental solids for energies up to 200 keV with 
a relativistic version of the full Penn Algorithm 
(FPA).[7] In addition, we developed a relativistic 
version of the TPP-2M equation that provides 
reasonable IMFP estimates for energies between 50 eV 

and 200 keV. The root-mean-square (RMS) deviation 
between the estimated IMFPs from the TPP-2M 
equation and the directly calculated values was 11.9 % 
for the group of 41 elemental solids.[7] This RMS 
deviation was similar to that found (10.2 %) in a similar 
comparison for our original group of 27 elemental 
solids for the 50 eV to 2 keV energy range.[4] 

In this presentation, we will report calculations of 
IMFPs with the relativistic FPA using the Boutboul 
approach [9] for 45 compounds (AgBr, AgCl, AgI, 
Al2O3, AlAs, AlN, AlSb, cubic BN (c-BN), hexagonal 
BN (h-BN), CdS, CdSe, CdTe, GaAs, GaN, GaP, GaSb, 
GaSe, H2O, InAs, InP, InSb, KBr, KCl, LiF, MgF2, 
MgO, NaCl, NbC0.712, NbC0.844, NbC0.93, PbS, PbSe, 
PbTe, Si3N4, SiC, SiO2, SnTe, TiC0.7, TiC0.95, VC0.76, 
VC0.86, Y3Al5O12, ZnS, ZnSe, and ZnTe) for energies 
between 50 eV and 200 keV. The IMFPs for most of 
these compounds (exceptions H2O, LiF, and Si3N4) 
have already been published [8].  
 
2. IMFP Calculations with the Relativistic Full Penn 
Algorithm 

The IMFPs were calculated with the relativistic FPA 
that includes the bandgap effect with the Boutboul 
approach for semiconductors and insulators at equal 
energy intervals on a logarithmic scale corresponding 
to increments of 10 % from 10 eV to 1 MeV. We will 
present IMFPs for energies between 10 eV and 50 eV 
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and between 200 keV and 1 MeV in Figures but these 
results are shown only to illustrate trends. The IMFP, , 
at electron energy T (>Eg + Ev), which is measured from 
the bottom of the valence band for semiconductors and 
insulators, can be expressed as :  
  

 

                    
 

where 𝑇′ = 𝑇 − 𝐸g and Eg is the bandgap energy. 
The integration domain D is determined from the 
maximum and minimum energy losses and the largest 
and smallest kinematically-allowed momentum 
transfers for a given energy T and ω: 
𝐷 = {(𝜔, 𝑞): 𝐸g ≤ 𝜔 ≤ (𝑇′ − 𝐸v), 𝑞_ ≤ 𝑞 ≤ 𝑞+ }  ,                          

where Ev is the width of the valence band for 
semiconductors and insulators, and  
 𝑞± = √𝑇′(2 + 𝑇′ 𝑐2⁄ ) ± √(𝑇′ − 𝜔)[2 + (𝑇′ − 𝜔) 𝑐2⁄ ]  . 
 
3. Results and discussion 
3.1 Effect of the bandgap energy on the calculated 
IMFPs 

The value of the bandgap energy Eg is an important 
parameter in the calculations of IMFPs for 
nonconductors, as shown in the above equations. We 
therefore investigated the influence of including the Eg 
value on the calculated IMFPs for several compounds 
including Si3N4 and LiF. The inclusion of the bandgap 
energy in the IMFP calculation generally leads to IMFP 
increases for E < 100 eV. This increase is due to the 
decrease in the ω (or energy) integral domain D. The 
lower limit of theω integral, ΔEmin, is set equal to the 
bandgap energy for nonconductors. This limit 
corresponds to the minimum excitation energy for 
electrons in the material. The maximum excitation 
energy corresponds to the upper limit of the ω integral, 
ΔEmax. This upper limit ensures that an incident 
electron will always have sufficient energy to remain in 
the conduction band. The upper limit is then given by
ΔEmax = T – Ev – Eg. On the other hand, ΔEmin and Δ

Emax for conductors are given by 0 and T - Ef, 
respectively, where Ef is the Fermi energy.  

 For T – Ev - Eg ≥ 100 eV, we found that the IMFPs 
from the FPA-Boutboul approach are larger than the 
IMFPs from the FPA with Eg assumed to be zero by less 
than 1.3%. For lower energies, the IMFP differences 
become larger due to the decrease in theω integral 

domain, reaching 30 %  and 7.3 % at 49.4 eV for LiF 
and Si3N4, respectively. 

We conclude that the effect of the bandgap energy 
on IMFPs calculations with the FPA is generally small 
(< 1.5 %) for energies over 100 eV even for materials 
that have large bandgap energies such as SiO2. 
3.2 Comparison of IMFPs with measured IMFPs 

We also compared our calculated IMFPs for 
Al2O3, AlAs, h-BN, GaAs, InP, MgO, and SiO2 with 71 
measured IMFPs for these compounds. These IMFP 
measurements have most often been made by elastic-
peak electron spectroscopy for energies between 100 
eV and 5 keV and by TEM at energies of 100 keV, 200 
keV or 300 keV, while some measurements were made 
for GaAs at energies between 24 eV and 140 eV by 
photoelectron spectroscopy. We found generally 
satisfactory agreement between the calculated and 
measured IMFPs with an average RMS deviation of 
23.5 % although some TEM IMFPs for AlAs and GaAs 
were smaller than our values by 48 % and 45 %, 
respectively. If these two measurements are disregarded, 
the average RMS difference between our calculated 
IMFPs and the 69 other measured IMFPs was 18.7 %.  
This average RMS difference is comparable to the 
average RMS difference between calculated and 
measured IMFPs of 13.6 % for 11 elemental solids at 
100 keV and for 32 elemental solids at 200 keV.[7]  
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